Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 20 (2025), 25 -- 74

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

A COMPREHENSIVE REVIEW OF THE PACHPATTE-TYPE INEQUALITY PERTAINING TO FRACTIONAL INTEGRAL OPERATORS

Muhammad Tariq, Asif Ali Shaikh and Sotiris K. Ntouyas

Abstract. In the frame of fractional calculus, the term convexity is primarily utilized to address several challenges in both pure and applied research. The main focus and objective of this review paper is to present Pachpatte-type inequalities involving a variety of classes of convexities pertaining to fractional integral operators, such as h-convex, m-convex, s-convex, interval h-convex, harmonically convex, interval harmonically h-convex, LR-convex interval-valued, cr-\mathsfh-convex, n-polynomial harmonically s-type convex, ℑs-convex, (α,m)-convex, p-convex and (p,h)-convex functions. Moreover a variety of classes of preinvex functions are included, such as (s,m,ξ)-preinvex, cr-\mathsfh-preinvex, m-preinvex, n-polynomial preinvex and interval-valued functions. Included in the fractional integral operators are Riemann--Liouville fractional integral, k-Riemann--Liouville fractional integral, (k-r)-Riemann--Liouville fractional integral, Ψ-Riemann--Liouville fractional integral, fractional integral operator of exponential kernel, generalized fractional integral, Caputo-Fabrizio fractional integral, Katugampola fractional integral, conformable fractional integral, genera-lized conformable fractional integral, non-conformable fractional integral and Atangana-Baleanu fractional integral operator.

2020 Mathematics Subject Classification: 26A33; 26A51; 26D07; 26D10; 26D15
Keywords: Pachpatte-type inequalities; convex function; Riemann--Liouville fractional integral; Katugampola fractional integral; Caputo-Fabrizio fractional integral; Atangana-Baleanu fractional integral

Full text

References

  1. Abdeljawad, A. On conformable fractional calculus. J. Comp. Appl. Math., 279 (2015), 57--66. MR3293309

  2. Abdeljawad, T. Fractional operators with exponential kernels and a Lyapunov type inequality. Adv. Differ. Equ. 2017, 2017, 313. MR3709392. Zbl 1444.26003

  3. Abdeljawad, T.; Baleanu, D. Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. J. Nonlinear Sci. Appl., 10 (2017), 1098-1107. MR3646671. Zbl 1412.47086

  4. Abdeljawad, T.; Baleanu, D. On fractional derivatives with exponential kernel and their discrete versions. Rep. Math. Phys. 80 (2017), 11--27. MR3689893. Zbl 1384.26025

  5. Agarwal, R.P.; Luo, M.J. and Raina, R.K. On Ostrowski type inequalities, Fasciculi Math., 204 (2016), 5-27. MR3541569

  6. Ahmad, B.; Alsaedi, A.; Kirane, M.; Torebek, B.T. Hermite-Hadamard, Hermite–Hadamard–Fejér, Dragomir–Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals. J. Comput. Appl. Math., 353 (2019), 120-129. MR3898309. Zbl 1426.26008

  7. Ahmad, S.; Rahman, M.U.; Arfan, M. On the analysis of semi-analytical solutions of Hepatitis B epidemic model under the Caputo-Fabrizio operator. Chaos Solitons Fractal, 146 (2021), 110892. MR4242910

  8. Akgül, A. A novel method for a fractional derivative with non-local and non-singular kernel. Chaos, Solitons & Fractals. 114 (2018), 478-482. MR3856671. Zbl 1415.34007

  9. Atangana, A. Application of Fractional Calculus to Epidemiology; Fractional Dynamics, 174--190. De Gruyter Open,Berlin, 2015. MR3468168

  10. Atangana, A.; Baleanu, D. New fractional derivatives with non-local and non-singular kernel, Theory and application to heat transfer model. Thermal Science, 2016, 20(2), 763-769.

  11. Atangana, A.; Baleanu, D. Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer. J. Eng. Mech. 143 (2017), D4016005.

  12. Bas, E.; Ozarslan, R. Real-world applications of fractional models by Atangana–Baleanu fractional derivative. Chaos, Solitons & Fractals. 116 (2018), 121-125. MR3983235. Zbl 1442.34008

  13. Boyd, S.; Crusius, C.; Hansson, A. New advances in convex optimization and control applications. IFAC Proc. 30, (1997), 365--393.

  14. Budak, H.; Tunc, T.; Sarikaya, M.Z. Fractional Hermite-Hadamard-type inequalities for interval-valued functions. Proc. Amer. Math. Soc. 148 (2020), 705-718. MR4052208. Zbl 1437.26025

  15. Butt, S.I.; Yousaf, S.; Khan, K.A.; Mabela, R.M.; Alsharif, A.M. Fejér-Pachpatte-Mercer-Type inequalities for harmonically convex functions involving exponential function in kernel. Math. Prob. Eng., 2022, 1--19.

  16. Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1 (2015), 73--85.

  17. Chandola, A.; Pandey, R.M.; Agarwal, R.; Agarwal, R.P. Hadamard Inequality for (k-r) Riemann-Liouville fractional integral operator via convexity. Progr. Fract. Differ. Appl. 8 (2022), 205-215.

  18. Chandrasekaran, V.; Jordan, M.I. Computational and statistical tradeoffs via convex relaxation. Proc. Natl. Acad. Sci. USA 10, (2013), 1181--1190. MR3047651. Zbl 1292.62019

  19. Chen, F. On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity. Chinese. J. Math., 2014, Article ID 173293, 7 pages. MR3226259. Zbl 1298.26020

  20. Chen, F. A note on Hermite Hadamard inequalities for products of convex functions via Riemann-Liouville fractional integrals. Ital. J. Pure. Appl. Math., 33 (2014), 299-306. MR3310752. Zbl 1332.26037

  21. Chen, S.; Rashid, S.; Hammouch, Z.; Noor, M.; Ashraf, R.; Chu, Y. Integral inequalities via Raina’s fractional integrals operator with respect to a monotone function. Adv. Differ. Equ., 2020, 2020, 647. MR4179981. Zbl 1487.26034

  22. Chen, F.; Wu.S. Some Hadamard type inequalities for harmonically s-convex functions. Sci. World J., 2014, Article ID 279158, 7 pages. MR3331150

  23. Chen, F.; Wu, S. Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions. J. Nonlinear Sci. Appl. 9 (2016), 705-716. MR3416283. Zbl 1329.26032

  24. Cingano, F. Trends in Income Inequality and Its Impact on Economic Growth, OECD Social, Employment and Migration Working Papers; No. 163; OECD Publishing: Berlin, Germany, 2014.

  25. Cloud, M.J.; Drachman, B.C.; Lebedev, L.P. Inequalities with Applications to Engineering; Springer International Publishing: Cham, Switzerland, 2014. MR3205375

  26. Deng, Y.; Kalsoom, H.; Wu, S. Some new Quantum Hermite--Hadamard-type estimates within a class of generalized (s,m)--preinvex functions. Symmetry 2019, 11, 1283.

  27. Duvaut, G.; Lions, J.L. Inequalities in mechanics and physics. J. Appl. Mech. 44 (1977), 364. MR3713348.

  28. El Shaed, M.A. Fractional Calculus Model of Semilunar Heart Valve Vibrations; International Mathematica Symposium: London, UK,~2003.

  29. Fang Z. B.; Shi, R. On the (p, h)-convex function and some integral inequalities, J. Ineq. Appl. 2014, 2014, Article ID 45. MR3213031

  30. Farman, M.; Akgul, A.; Nisar, K.; Ahmad, D.; Ahmad, A.; Kamangar, S.; Saleel, C. Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel. AIMS Math. 7 (2022), 756-783. MR4332402. Zbl 1485.92128

  31. Fóllmer, A.; Schied, A. Convex measures of risk and trading constraints. Financ. Stoch. 6, (2002), 429--447. MR1932379. Zbl 1041.91039

  32. Gürbüz, M.; Akdemir, A.O.; Rashid, S.; Set, E. Hermite-Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities. J. Inequl. Appl. 2020, 1--10. MR4114361. Zbl 1503.26051

  33. Hardy, G.H.; Littlewood, J.E.; Polya, G. Inequalities; Cambridge University Press, Cambridge Mathematical Library: Cambridge, UK, 1952. MR0944909. Zbl 0047.05302

  34. Hoan, L.V.C.; Akinlar, M.A.; Inc, M.; Gomez-Aguilar, J.F.; Chu, Y.M.; Almohsen, B. A new fractional-order compartmental disease model. Alex. Eng. J. 59 (2020), 3187--3196.

  35. Hudzik, H.; Maligranda, L. Some remarks on s-convex functions. Aequationes Math. 48 (1994), 100-111. MR1277893. Zbl 0823.26004

  36. Iscan, I. Hermite-Hadamard type inequalities for harmonically convex functions. Hacettepe J. Math. Stat. 43 (2014), 935-942. MR3331150. Zbl 1321.26048

  37. Kalsoom, H.; Idrees, M.; Baleanu, D.; Chu, Y.M. New estimates of q1q2-Ostrowski-type inequalities within a class of n-polynomial prevexity of function. J. Funct. Space. 2020, Article ID 3720798, 13 pages. MR4129918

  38. Karaoglan, A.; Set, E.; Akdemir, A.O.; Özdemir, M.E. Fractional integral inequalities for preinvex functions via Atangana-Baleanu integral operators. Miskolc Math. Notes 25 (2024), 329–347. MR4767835. Zbl 07911219

  39. Kashuri, A.; Iqbal, S.; Liko, R.; Gao, W.; Samraiz, M. Integral inequalities for s-convex functions via generalized conformable fractional integral operators. Adv. Differ. Equ. 2020, 2020, \em217. MR4099584. Zbl 1482.26034

  40. Kashuri, A.; Liko, R. Hermite-Hadamard type integral inequalities for products of two generalized (s,m,ξ)-preinvex functions. Moroccan J. Pure and Appl. Anal. 2017, 102--115. MR3647615. Zbl 7862501

  41. Katugampula, U.N. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 45 (2014), 1-16. MR3298307

  42. Kirmaci, U.S.; Bakula, M.K.; Ozdemir, M.E.; Pecaric, J. Hadamard type inequalities for s-convex functions. Appl. Math. Comput., 193 (2007), 26-35. MR2385762

  43. Kulish, V.V.; Lage, J.L. Application of fractional calculus to fluid mechanics. J. Fluids Eng. 124 (2002), 803--806.

  44. Kumar, A.; Ahmad, M.; Swamy, M. Image denoising based on fractional gradient vector flow and overlapping group sparsity as priors. IEEE Transactions on Image Processing, 30 (2021), 7527-7540. MR4313339

  45. Liu, K.; Wang, J.; O’Regan D. On the Hermite-Hadamard type inequality for Ψ-Riemann--Liouville fractional integrals via convex functions. J. Inequal. Appl. 2019, 2019, 27. MR3904525. Zbl 1499.26144

  46. Luo, Z.Q.; Yu, W. An introduction to convex optimization for communications and signal processing. IEEE J. Sel. Areas Commun. 24, (2006), 1426--1438.

  47. Mohan, S.R., Neogy, S.K.: On invex sets and preinvex functions. J. Math. Anal. Appl. 189 (1995), 901-908. MR1312559. Zbl 0831.90097

  48. Mordukhovich, B.S.; Nam, N.M. An easy path to convex analysis and applications. Synth. Lect. Math. Stat. 6, (2013), 1--218. MR3184318. Zbl 1284.49002

  49. Mihesan, V.G., A Generalization of the Convexity, Seminar of Functional Equations, Approx. and Convex, Cluj-Napoca, Romania, 1993.

  50. Mubeen, S.; Habibullah, G.M. k-Fractional integrals and application. Int. J. Contemp. Math. Sci. 7 (2012), 89--94. MR2878620. Zbl 1248.33005

  51. Özdemir, M.E.; Bayraktar, B.; Butt, S.I.; Akdemir, A.O. Some new Hermite-Hadamrd type inequalities via non-conformable fractional integrals. Turkish J. Ineq., 5 (2021), 48 –60 .

  52. Pachpatte, B.G. On some inequalities for convex functions. RGMIA Research Report Collection. 6 (2003), 1–8.

  53. Pelczynski, J. Application of the theory of convex sets for engineering structures with uncertain parameters. Appl. Sci. 110, (2020),~6864.

  54. Rahman, M.U.; Ahmad, S.; Matoog, R.T.; Alshehri, N.A.; Khan, T. Study on the mathematical modelling of COVID-19 with Caputo-Fabrizio operator. Chaos Solitons Fractal, 150 (2021), 111121. MR4274925

  55. Rashid, S.; Hammouch, Z.; Baleanu, D.; Chu, Y. New generalizations in the sense of the weighted non-singular fractional integral operator. Fractals 2020, 28(8), 2040003. Zbl 1489.26008

  56. Rashid, S.; \.Işcan, \.I.; Baleanu, D.; Chu, Y. M. Generation of new fractional inequalities via n--polynomials s--type convexity with applications. Adv. Differ. Equ. \bf2020, 2020, 264. MR4108517. Zbl 1482.26038

  57. Sarikaya, M.Z.; Yildirim, H. On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Math. Notes. 17 (2016), 1049--59. MR3626938. Zbl 1389.26051

  58. Sahoo, S.K,; Agarwal, R.P.; Mohammed, P.O.; Kodamasingh, B.; Nonlaopon, K.; Abualnaja, K.M. Hadamard–Mercer, Dragomir–Agarwal–Mercer, and Pachpatte–Mercer type fractional inclusions for convex functions with an exponential kernel and their applications. Symmetry, 2022, 14, 836.

  59. Sahoo, S.K.; Hamed, Y.S.; Mohammed, P.O.; Kodamasingh, B.; Nonlaopon, K. New midpoint type Hermite-Hadamard-Mercer inequalities pertaining to Caputo-Fabrizio fractional operators. Alex. Eng. J. 65 (2022), 689-698.

  60. Sahoo, K.S.; Latif, M.A.; Alsalami, O.M.; Treanta, Savin.; Sudsutad, W.; Kongson, J. Hermite-Hadamard, Fejer and Pachpatte-type integral inequalities for center-radius order interval-valued preinvex functions. FractalFract. 2022 6, 506.

  61. Sahoo, S.K.; Mohammed, P.O.; Kodamasingh, B.; Tariq, M.; Hamed, Y.S. New fractional integral Inequalities for convex functions pertaining to Caputo–Fabrizio operator. FractalFract. 2022, 6, 171.

  62. Sahoo, S.K.; Sarairah, E.A.; Mohammed, P.O.; Tariq, M.; Nonlaopon, K. Modified inequalities on center-radius order interval-valued functions pertaining to Riemann--Liouville fractional integrals, Axioms, 2022, 11, 732.

  63. Sahoo, S.K.; Tariq, M.; Ahmad, H.; Kodamasingh, B.; Shaikh, A.A.; Botmart, T.; El-Shorbagy, M.A. Some novel fractional integral inequalities over a new class of generalized convex function. Fractal Fract. \bf2022, 6, 42.

  64. Shi, F.; Ye, G.; Zhao, D.; Liu, W. Some fractional Hermite-Hadamard-type inequalities for interval-valued functions. Mathematics, 2020, 8, 534.

  65. Set, E.; Akdemir, A.O.; Celik, B. Certain Hermite-Hadamard type inequalities associated with conformable fractional integral operators. Creat. Math. Inform. 26 (2017), no. 3, 321–330. MR3793385. Zbl 1413.26015

  66. Set, E.; Celik, B. Generalized fractional Hermite-Hadamard type inequalities for m-convex and (α, m)-convex functions. Commun. Fac. Sci. Univ. Ank. Ser. A 1 Math. Stat., 67 (2018), 333-344. MR3703359. Zbl 1410.26015

  67. Song, H.; Dai, R.; Raskutti, G.; Barber, R.F. Convex and non-Convex approaches for statistical inference with class-conditional noisy labels. J. Mach. Learn. Res. 21, (2020), 1--58. MR4209454. Zbl 1525.68126

  68. Sousa, J.V.C.; Oliveira, E.C. On the Ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60 (2018), 72--91. MR3762997. Zbl 1470.26015

  69. Srivastava, H.M.; Sahoo, S.K.; Mohammed, P.O.; Kodamasingh, B.; Hameed, Y.S. New Riemann-Liouville fractional-order inclusions for convex functions via interval-valued setting associated with pseudo-order relations. FractalFract. 2022, 6, 212.

  70. Srivastava, H.M.; Sahoo, S.K.; Mohammed, P.O.; Kodamasingh, B.; Nonlaopon, K.; and Abualnaja, K.M. Interval-valued Hadamard-Fejer and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel. AIMS Math., 7 (2022), 15041–15063. MR4443426

  71. Srivastava, H.M.; Sahoo, S.K.; Mohammed. P.O.; Baleanu, D.; Kodamasingh, B Hermite-Hadamard type inequalities for interval-valued preinvex functions via fractional integral operators. Int. J. Comp. Intel. Sys., 15, 8 (2022).

  72. Stojiljkovic, V.; Ramaswamy, R.; Abdelnaby, O.A.A.; Radenovic, S. Riemann-Liouville fractional inclusions for convex functions using interval-valued setting. Mathematics 2022, 10, 3491.

  73. Tariq, M.; Ahmad, H.; Shaikh, A.G.; Sahoo, S.K.; Khedher, K.M.; Gia, T.N. New fractional integral inequalities for preinvex functions involving Caputo-Fabrizio operator. AIMS Math. 7 (2022), 3440–3455. MR4347870

  74. Tariq, M.; Alsalami, O.M.; Shaikh, A.A.; Nonlaopon, K.; Ntouyas, S.K. New fractional integral inequalities pertaining to Caputo–Fabrizio and generalized Riemann–Liouville fractional integral operators. Axioms, 2022, 11, 618.

  75. Tariq, M.; Ntouyas, S.K.; Shaikh, A.A. New variant of Hermite–Hadamard, Fejér and Pachpatte-type inequality and its refinements pertaining to the fractional integral operator, Fractal Fract. 2023, 7, 405.

  76. Tariq, M.; Sahoo, S.K.; Ntouyas, S.K.; Alsalami, O.M.; Shaikh, A.A.; Nonlaopon, K. Some Hermite–Hadamard and Hermite–Hadamard–Fejér type fractional inclusions pertaining to different kinds of generalized preinvexities. Symmetry 2022, 14, 1957.

  77. Tariq, M.; Shaikh. A.A.; Ntouyas, S.K. Some new fractional Hadamard and Pachpatte-type inequalities with applications via generalized preinvexity. Symmetry 2023, 15, 1033.

  78. Tariq, M.; Shaikh, A.A.; Ntouyas, S.K.; Tariboon, J. Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator. AIMS Math. 8 (2023), 25572–25610. MR4643163

  79. Toader, G.H. Some generalizations of the convexity, in Proceedings of the Colloquium on Approximation and Opimization, pp. 329–338. (Cluj-Napoca, 1985), 329–338. University of Cluj-Napoca, Department of Mathematics, Cluj-Napoca, 1985 MR0847286

  80. Valdés, J. Generalized fractional Hilfer integral and derivative. Contrib. Math. 2 (2020), 55-60. Zbl 1538.26018

  81. Valdes, J.E.N.; Guzman, P.M.; Lugo, L.M. Some new results on non-confromable fractional calculus. Adv. Dyn. Syst. Appl. 13 (2018), 167--175. MR3875272

  82. Valdes, J.E.N.; Rodriguez, J.M.; Sigarreta, J.M. New Hermite--Hadamard type inequalities involving non-conformable Integral Operators. Symmetry 2019, 11, 1108.

  83. Wang, W.; Khan, M.; Kumam, P.; Thounthong, P. A comparison study of bank data in fractional calculus. Chaos, Solitons & Fractals. 126 (2019), 369-384. MR3983235. Zbl 1448.91176

  84. Weir, T., Mond, B. Pre-invex functions in multiple objective optimization. J. Math. Anal. Appl. 136 (1988), 29-38. MR0972581

  85. Wu, S.; Iqbal, S.; Aamir, M.; Samraiz, M.; Younus, A. On some Hermite-Hadamard inequalities involving k-fractional operators. J.~Inequal. Appl. 2021, 2021, 32. MR4217994. Zbl 1504.26071

  86. Yusuf, A.; Qureshi, S.; Inc., M.; Aliyu, A.; Baleanu, D.; Shaikh, A.A. A two-strain epidemic model involving fractional derivative with Mittag-Leffler kernel. Chaos 18 (2018):123121. MR3892871. Zbl 1404.92211

  87. Zhang, W.; Lu, X.; Li, X. Similarity constrained convex nonnegative matrix factorization for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 57, (2009), 10--22.

  88. Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 404 (2021), 178-204. MR4174523. Zbl 1464.26025

  89. Zhang, D.; Saleem, M.S.; Botmart, T.; Zahoor, M.S.; Bano, R. Hermite-Hadamard type inequalities for generalized convex functions via the Caputo-Fabrizio fractional integral operator. J. Funt. Spaces 2021, 5640822, 8 pages. MR4343221. Zbl 1486.26056

  90. Zhao, D.F.; An, T.Q.; Ye, G.J.; Liu, W. New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions. J. Inequal. Appl. 2018, 2018, 302. MR3874054. Zbl 1498.26078

  91. Zhao, D.F.; An, T.Q.; Ye, G.J.; Torres, D.F.M. On Hermite–Hadamard type inequalities for harmonically h-convex interval-valued functions. Math. Inequal. Appl. 23 (2020), 95-105. MR4061527




Muhammad Tariq
Department of Basic Sciences and Related Studies,
Mehran University of Engineering and Technology,
Jamshoro 76062, Pakistan
e-mail: captaintariq2187@gmail.com



Asif Ali Shaikh
Department of Basic Sciences and Related Studies,
Mehran University of Engineering and Technology,
Jamshoro 76062, Pakistan
e-mail: asif.shaikh@faculty.muet.edu.pk


Sotiris K. Ntouyas - corresponding author
Department of mathematics,
University of Ioannina,
451 10 Ioannina, Greece
e-mail: sntouyas@uoi.gr

https://www.utgjiu.ro/math/sma