Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 20 (2025), 203 -- 216

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

HARDY SPACE OF CLAUSEN'S AND GOURSAT'S HYPERGEOMETRIC FUNCTIONS

Jocelyn Johnson and S. Sunil Varma

Abstract. Let ℛ denote the class of analytic functions defined in the open unit disc Δ=\z∈ ℂ: |z|<1\ whose derivative has positive real part and H be the space of all bounded analytic functions defined in the open unit disc. In this research article we determine the conditions on the parameters of Clausen's hypergeometric function, 3F2(a,b,c;d,e;z) and Goursat's hypergeometric function, 2F2(a,b;c,d;z) so that the convolution of z3F2(a,b,c;d,e;z) and z2F2(a,b;c,d;z) with a function in ℛ belong to H ∩ ℛ.

2020 Mathematics Subject Classification: Primary: 30H10; Secondary: 30H05, 33C20, 30C45.
Keywords: Analytic functions, Hardy spaces, Clausen's hypergeometric function, Goursat's hypergeometric function.

Full text

References

  1. H. Bateman, (Ed. by A. Erdelyi, W. Magnus, F. Oberhettinger and F.G. Tricomi), Higher Transcendental Functions, Vol.I, McGraw-Hill Book Company, New York, Toronto and London, 1953. Zbl 0542.33001, MR0344526

  2. J. H. Choi, Y. C. Kim and H. M. Srivastava, Convex and starlike generalized hypergeometric functions associated with the Hardy space, Complex Variables Theory Appl., 31 (1996), 345–355. Zbl 0865.30010, MR1427162

  3. L. De Branges, A proof of the Bieberbach's conjecture, Acta. Math., 154 (1985), 137-152. Zbl 0573.30014, MR0772434

  4. P. L. Duren, Theory of Hp Spaces, A Series of Monographs and Textbooks in Pure and Applied Mathematics, Vol. 38, Academic Press, New York and London, 1970. Zbl 0215.20203, MR0268655

  5. P. L. Duren, Univalent Functions, Grundlehren Math. Wisschaften 259, Springer, Berlin, 1983. Zbl 0514.30001, MR0708494

  6. L. Fejer, Untersuchungen uber Potenzreihen mit mehrfach monotoner Koeffizientenfoge, Acta Littterarum ac Scientiarum 8 (1937), 89-115. Zbl 0016.10803

  7. I. B. Jung, Y. C. Kim, H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176 (1993), 138-147. Zbl 0774.30008, MR1222160

  8. W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169-185.Zbl 0048.31101, MR0054711

  9. Y. C. Kim, K. S. Lee and H. M. Srivastava, Certain classes of integral operators associated with the Hardy space of analytic functions, Complex Variables Theory Appl. 20 (1992), 1-12. Zbl 0774.30051, MR1284348

  10. Y. C. Kim and H. M. Srivastava, Some families of generalized hypergeometric functions associated with the Hardy space of analytic functions, Proc. Japan Acad. Ser. A Math. Sci., 70 (1994), 41-46. Zbl 0797.30013, MR1272668

  11. Y. C. Kim and H. M. Srivastava, The Hardy space of α-convex functions associated with a certain integral operator, Complex Variables Theory Appl., 32 (1997), 345–353. Zbl 0874.30008, MR1459596

  12. Y. C. Kim and H. M. Srivastava, The Hardy space of a certain subclass of Bazilevic functions, Appl. Math. Comput., 183 (2006), 1201–1207. Zbl 1135.30018, MR2294077

  13. T. H. Mac Gregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104 (1962), 129-155. Zbl 0106.04805, MR0140674

  14. S. Ponnusamy, The Hardy Spaces of Hypergeometric Functions, Comp. Var. and Elli. Eqns., 29 (1996), 83-96. Zbl 0845.30036, MR1382005

  15. M. I. Qureshi, Choudhary Wali Mohd. and M. Kashif Khan, Some Transformations for Goursat's Function 2F2F(2z), South.East.Asian.J.Math. and Math.Sci., 18(1) (2022), 179-190. Zbl 1499.33021, MR4439228.

  16. St. Ruscheweyh and J. Stankiewicz, Subordination Under convex univalent functions, Bull. Pol. Acad. Sci. Math. , 33 (1985), 499-502. Zbl 0583.30015, MR0826376.

  17. M. A. Shpot and H. M. Srivastava, The Clausenian hypergeometric function 3F2 with unit argument and negative parameter differences, Appl. Math. Comput., 259 (2015), 819-827. Zbl 1390.33017, MR3338414

  18. J. Stankiewicz and Z. Stankiewicz, Some applications of Hadamard convolutions in the theory of functions, Ann. Univ. Mariae Curie-Skłodowska, 40 (1986), 251-265. Zbl 0642.30019, MR0945178.



Jocelyn Johnson
Department of Mathematics,
Madras Christian College (University of Madras),
600059, East Tambaram, Tamil Nadu, India.
e-mail: jocelynjohnson1010@gmail.com


S. Sunil Varma
Department of Mathematics,
Madras Christian College (University of Madras),
600059, East Tambaram, Tamil Nadu, India.
e-mail: sunilvarma@mcc.edu.in




https://www.utgjiu.ro/math/sma