Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 20 (2025), 217 -- 233
This work is licensed under a Creative Commons Attribution 4.0 International License.GENERALIZED SASAKIAN-SPACE-FORMS WITH A CONTACT CONFORMAL CURVATURE TENSOR
Sudhakar Kumar Chaubey, Sunil Yadav and Mehmet Akif Akyol
Abstract. The present paper deals with the study of generalized Sasakian-space-forms. We show that the Ricci operator commutes with φ. The necessary and sufficient conditions for the Ricci and φ-contact conformally flat generalized Sasakian-space-forms are proved. We validate our results by providing a non-trivial example of a generalized Sasakian-space-form.
2020 Mathematics Subject Classification: 53D10, 53C25, 53D15
Keywords: Sasakian manifolds; generalized Sasakian-space-forms; contact conformal curvature tensor
References
P. Alegre, D. E. Blair and A. Carriazo, Generalized Sasakian-space-forms, Israel J. Math. 141 (2004), 157--183. MR2063031. Zbl 1064.53026.
P. Alegre and A. Carriazo, Structures on generalized Sasakian-space-forms, Differential Geom. Appl. 26 (2008), 656--666. MR2474428. Zbl 1156.53027.
P. Alegre and A. Carriazo, Generalized Sasakian-space-forms and conformal changes of metric, Results Math. 59 (2011), 485--493. MR2793469. Zbl 1219.53048.
A. Carriazo, P. Alegre, C. Özgür and S. Sular, New examples of generalized Sasakian-space-forms, Rend. Semin. Mat. Univ. Politec. Torino 73 (2015), 63--76. MR3641390. Zbl 1454.53043.
K. Bang and J. Y. Kye, Vanishing of contact conformal curvature tensor on 3-dimensional Sasakian manifolds, Kangweon-Kyungki Math. Jour. 10 (2002), no. 2, 157--166.
D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Vol. 509, Springer-Verlag, Berlin, 1976. MR467588. Zbl 0319.53026.
D. E. Blair, Two remarks on contact metric structures, Tohoku Math. Journ. 29 (1977), 319--324. MR464108. Zbl 0376.53021.
S. K. Chaubey and A. Yildiz, On Ricci tensor in the generalized Sasakian-space-forms, International Journal of Maps in Mathematics 2 (2019), no. 1, 131--147.
S. K. Chaubey and S. K. Yadav, W-semisymmetric generalized Sasakian-space-forms, Adv. Pure Appl. Math. 10 (2019), no. 4, 427--436. MR4015211. Zbl 1429.53064.
S. K. Chaubey and Y. J. Suh, Ricci-Bourguignon solitons and Fischer-Marsden conjecture on generalized Sasakian-space-forms with β-Kenmotsu structure, J. Korean Math. Soc. 60 (2023), no. 2, 341--358. MR4553857. Zbl 1519.53038.
U. C. De and P. Majhi, φ-semisymmetric generalized Sasakian-space-forms, Arab. J. Math. Sci. 21 (2015), 170--178. MR3376109. Zbl 1330.53037.
M. K. Dwivedi, L. M. Fernández and M. M. Tripathi, The structure of some classes of contact metric manifolds, Georgian Math. J. 16 (2009), no. 2, 295--304. MR2562362. Zbl 1173.53316.
S. K. Hui and D. G. Prakasha, On the C-Bochner curvature tensor of generalized Sasakian-space-forms, Proc. Nat. Acad. Sci. India Sect. A 85 (2015), no. 3, 401--405. MR3396570. Zbl 1325.53059.
S. K. Hui, D. G. Prakasha and V. Chavan, On generalized φ-Recurrent generalized Sasakian-space-forms, Thai J. Math. 15 (2017), no. 2, 323--332. MR3696223. Zbl 1384.53046.
J. C. Jeong, J. D. Lee, G. H. Oh and J. S. Pak, On the contact conformal curvature tensor, Bull. Korean Math. Soc. 27 (1990), no. 2, 133--142. MR1088539. Zbl 0726.53032.
U. K. Kim, Conformally flat generalized Sasakian-space-forms and locally symmetric generalized Sasakian-space-forms, Note Mat. 26 (2006), 55--67. MR2267682. Zbl 1118.53025.
J. S. Kim, J. Choi, C. Özgür and M. M. Tripathi, On the contact conformal curvature tensor of a contact metric manifold, Indian J. pure and appl. Math. 37 (2006), no 4, 199--207. MR2273319. Zbl 1125.53066.
H. Kitahara, K. Matsuo and J. S. Pak, A conformal curvature tensor field on Hermitian manifolds, J. Korean Math. Soc. 27 (1990), no. 1, 7--17. MR1061071. Zbl 0711.53020.
C. W. Lee, J. W. Lee, Gabriel-Eduard Vîlcu and D. W. Yoon, Optimal inequalities for the casorati curvatures of submanifolds of generalized space forms endowed with semi-symmetric metric connections, Bull. Korean Math. Soc. 52 (2015), No. 5, 1631--1647. MR3406025. Zbl 1330.53071.
C. Özgür and S. Sular, On N(k)-contact metric manifolds satisfying certain conditions, SUT J. Math. 44 (2008), no. 1, 89--99. MR2450137. Zbl 1166.53020.
J. S. Pak and Y. J. Shin, A note on contact conformal curvature tensor, Commun. Korean Math. Soc. 13 (1998), no. 2, 337--343. MR1716614. Zbl 0970.53028.
J. S. Pak, Y. J. Shin and J. C. Jeong, Contact metric manifolds with vanishing contact conformal curvature tensor fields, Kyungpook Math. J. 35 (1996), 747--751. MR1678221. Zbl 1074.53505.
S. K. Yadav and S. K. Chaubey, Certain results on submanifolds of generalized Sasakian space forms, Honam Mathematical J. 42 (2020), no. 1, 123--137. MR4116427. Zbl 1448.53021.
Sudhakar Kumar Chaubey - Corresponding author
Section of Mathematics, Department of Information Technology,
College of Computing and Information Sciences,
University of Technology and Applied Sciences, Shinas - 324, Oman.
e-mail: sk22_math@yahoo.co.in
Sunil Yadav
Department of Applied Science and Humanities,
United College of Engineering & Research, A-31 UPSIDC Industrial Areas,
U.P., India.
e-mail: prof_sky16@yahoo.com
Mehmet Akif Akyol
Uşak University,
Faculty of Engineering and Natural Sciences, Department of Mathematics,
64, Uşak, Türkiye.
e-mail: mehmet.akyol@usak.edu.tr
https://www.utgjiu.ro/math/sma