Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 20 (2025), 251 -- 266

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

MULTINOMIAL FIX-MAHONIAN STATISTICS

Hery Randriamaro

Abstract. The permutation statistics fix, des, maj, and inv have different original contexts, and appear in diverse scientific domains such as probability, physics, and genomics. But so far, they only meet together in generating functions and equidistributions. Examples are the generating function of (inv,  des,  maj) computed by Garsia and Gessel, and the equidistributivity of (fix,  des,  maj) and (fix,  dez,  maz) proved by Foata and Han. Recently, Tsilevich and Vershik determined the eigenvalues and multiplicities of (des(σ τ-1))σ, τ ∈ 𝔖n, (maj(σ τ-1))σ, τ ∈ 𝔖n, and (inv(σ τ-1))σ, τ ∈ 𝔖n, and Tsilevich determined those of (fix(σ τ-1))σ, τ ∈ 𝔖n. This article studies combinations of these statistics in terms of matrices. For that, the regular representation of the sum over all permutations weighted by the sum of their multinomial descents, inversions, and fixed points is considered. We compute the eigenvalues and multiplicities of that matrix. Then, we deduce those of (des(σ τ-1) + maj(σ τ-1) + inv(σ τ-1) + fix(σ τ-1))σ, τ ∈ 𝔖n.

2020 Mathematics Subject Classification: 05A05; 05E10; 15A18
Keywords: Permutation statistics; Algebra representation; Matrix spectrum

Full text

References

  1. M.~Bishop, G.~Pfeiffer, On the quiver presentation of the descent algebra of the symmetric group. J. Algebra\/ 383 (2013), 213--231. MR3037976. Zbl 1291.20003.

  2. M.~Bouvel, E.~Pergola, Posets and permutations in the duplication–loss model: minimal permutations with d descents. Theoret. Comput. Sci.\/ 411 (2010), 2487--2501. MR2666343. Zbl 1207.05003.

  3. P.~Brémaud, Markov Chains: Gibbs fields, Monte Carlo simulation, and queues.\/ Springer Science & Business Media, 2001. MR4174390. Zbl 0949.60009.

  4. P.~Diaconis, J.~Fulman, R.~Guralnick, On fixed points of permutations. J. Algebraic Combin.\/ 28 (2008), 189--218. MR2420785. Zbl 1192.20001.

  5. D.~Foata, On the netto inversion number of a sequence. Proc. Amer. Math. Soc.\/ 19 (1968), 236--240. MR0223256. Zbl 0157.03403.

  6. D.~Foata, G.-N. Han, Fix-mahonian calculus, i: two transformations. European J. Combin.\/ 29 (2008), 1721--1732. MR2431763. Zbl 1168.05006.

  7. D.~Foata, G.-N. Han, Fix-mahonian calculus, ii: further statistics. J. Combin. Theory Ser. A\/ 115 (2008), 726--736. MR2417018. Zbl 1152.05008.

  8. A.~Garsia, I.~Gessel, Permutation statistics and partitions. Adv. Math.\/ 31 (1979), 288--305. MR0532836. Zbl 0431.05007.

  9. I.~Gessel, C.~Reutenauer, Counting permutations with given cycle structure and descent set. J. Combin. Theory Ser. A\/ 64 (1993), 189--215. MR1245159. Zbl 0793.05004.

  10. R.~Horn, C.~Johnson, Matrix analysis.\/ Cambridge University Press, 2012. MR1245159. Zbl 1267.15001.

  11. C.~Krattenthaler, Advanced determinant calculus. Sém. Lothar. Combin.\/ 42 (1999). MR1701596. Zbl 0923.05007.

  12. C.-A. Laisant, Sur la numération factorielle, application aux permutations. Bull. Soc. Math. France\/ 16 (1888), 176--183. MR1504048.

  13. P.~D. Montmort, Essay d'analyse sur les jeux de hazard\/. Jacque Quillau, 1708. MR0605303. Zbl 0476.60001.

  14. H.~Randriamaro, Diagonalization of matrices of statistics. Ann. Comb.\/ 17 (2013), 549--569. MR3090178. Zbl 1272.05219.

  15. P.~Renteln, The distance spectra of Cayley graphs of Coxeter groups. Discrete Math.\/ 311 (2011), 738--755. MR2774230. Zbl 1233.05132.

  16. B.~Sagan, The symmetric group: representations, combinatorial algorithms, and symmetric functions.\/ Springer Science & Business Media, 2001. MR1824028. Zbl 0964.05070.

  17. N.~Tsilevich, On the dual complexity and spectra of some combinatorial functions. J. Math. Sci. (N.Y.)\/ 232 (2018), 170--176. MR3743410. Zbl 1398.05224.

  18. N.~Tsilevich, A.~Vershik, On the relation of some combinatorial functions to representation theory. Funct. Anal. Appl.\/ 51 (2017), 22--31.

  19. D.~Zagier, Realizability of a model in infinite statistics. Commun. Math. Phys.\/ 147 (1992), 199--210. MR1171767. Zbl 0789.47042.



Hery Randriamaro
Universität Kassel,
Institut für Mathematik,
Heinrich-Plett-Straße 40, 34132 Kassel, Germany.
e-mail: hery.randriamaro@mathematik.uni-kassel.de
https://www.mathematik.uni-kassel.de/randriamaro/index.html

https://www.utgjiu.ro/math/sma