Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 20 (2025), 341 -- 354

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

LEFSCHETZ FIXED POINT THEOREMS FOR EXTENSION TYPE SPACES WITH RESPECT TO A SELECTION MAP

Donal O'Regan

Abstract. In this paper we present fixed point theorems for a general class of maps defined on extension type spaces with respect to a map.

2020 Mathematics Subject Classification: 47H10; 54H25.
Keywords: fixed points; acyclic maps; extension spaces.

Full text

References

  1. R.P. Agarwal, D.O'Regan, Fixed point theory for maps with lower semicontinuous selections and equilibrium theory for abstract economies, J. Nonlinear Convex Anal. 2(2001), 31--46. MR1828157. Zbl 1007.47020.

  2. H. Ben-El-Mechaiekh, The coincidence problem for compositions of set valued maps, Bull. Austral. Math. Soc. 41(1990), 421--434. MR1071044. Zbl 0688.54030.

  3. H. Ben-El-Mechaiekh, Spaces and maps approximation and fixed points, J. Comput. Appl. Math. 113(2000), 283--308. MR1735830. Zbl 0949.54059.

  4. H. Ben-El-Mechaiekh, P. Deguire, Approachability and fixed point for non-convex set-valued maps, J. Math. Anal. Appl. 170(1992), 477--500. MR1188567. Zbl 0762.54033.

  5. X.P. Ding, W.K. Kim, K.K. Tan, A selection theorem and its applications, Bull. Australian Math. Soc. 46(1992), 205--212. MR1183778. Zbl 0762.47030.

  6. R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989. MR1039321. Zbl 0684.54001.

  7. G. Fournier, L. Gorniewicz, The Lefschetz fixed point theorem for multi--valued maps of non metrizable spaces, Fundamenta Math. 92(1976), 213-222. MR0420600. Zbl 0342.55006.

  8. G. Fournier, A. Granas, The Lefschetz fixed point theorem for some classes of non metrizable spaces, J. Math. Pures Appl. 52(1973), 271--283. MR0339116. Zbl 0294.54034.

  9. L. Gorniewicz , A. Granas, Fixed point theorems for multi--valued mappings of the absolute neighborhood retracts, J. Math. Pures et Appl. 49(1970), 257--271. MR0285004. Zbl 0203.25203.

  10. L. Gorniewicz, Topological fixed point theory of multivalued mappings, Kluwer Acad. Publishers, Dordrecht, 1999. MR2238622. Zbl 0937.55001.

  11. W. He, N.C. Yannelis, Equilibria with discontinuous preferences: new fixed point theorems, J. Math. Anal. Appl. 450(2017), 1421--1433. MR3639109. Zbl 1510.91007.

  12. J.L. Kelley, General Topology, D.Van Nostrand, New York, 1955. MR0070144. Zbl 0066.16604.

  13. M. A. Khan, R.P. McLean, M. Uyanik, On equilibria in constrained generalized games with the weak continuous inclusion property, J. Math. Anal. Appl. 537(2024), Art. No. 128258, 19pp. MR4717711. Zbl 1536.91014.

  14. L.J. Lin, S. Park, Z.T. Yu, Remarks on fixed points, maximal elements and equilibria of generalized games, J. Math. Anal. Appl. 233(1999), 581--596. MR1689602. Zbl 0949.91004.

  15. E. Michael, Continuous selections I, Ann. of Math. 63(1956), 361--382. MR0077107. Zbl 0071.15902.

  16. D. O'Regan, A note on maps with upper semicontinuous selections on extension type spaces, The Journal of Analysis. To appear.

  17. D. O'Regan, Fixed point theory for compact absorbing contractions in extension type spaces, CUBO, A Mathematical Journal. 12(2010), 199-215. MR2724888. Zbl 1218.54045.

  18. D.O'Regan, Fixed point theory for extension type maps in topological spaces, Applicable Analysis. 88(2009), 301--308. MR2536035. Zbl 1218.54044.

  19. M.J. Powers, Multi--valued mappings and Lefschetz fixed point theorems, Proc. Camb. Phil. Soc. 68(1970), 619--630. MR0264657. Zbl 0201.25001.

  20. V. Scalzo, Existence of doubly strong equilibria in generalized games and quasi--Ky Fan minimax inequalities, J. Math. Anal. Appl. 514(2022), Art. No. 126258, 11pp. MR4412223. Zbl 1492.91023.

  21. X. Wu, A new fixed point theorem and its applications, Proc. Amer. Math. Soc. 125(1997), 1779--1783. MR1397000. Zbl 0871.47038.



Donal O'Regan
School of Mathematical and Statistical Sciences,
University of Galway,
Galway, Ireland.
e-mail: donal.oregan@nuigalway.ie
orchid: https://orcid.org/0000-0002-4096-1469


https://www.utgjiu.ro/math/sma