Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 20 (2025), 355 -- 373
This work is licensed under a Creative Commons Attribution 4.0 International License.GEOMETRIC FEATURES OF NORMAL CURVES IN EUCLIDEAN SPACES
Absos Ali Shaikh, Pushpinder Badyal, Sandeep Sharma and Kuljeet Singh
Abstract. A normal curve in the Euclidean space E3 is defined as a curve whose position vector lies entirely within the normal plane, ensuring orthogonality at each point to the tangent vector. In this article, we examine normal curves in E3 and E4. For E3, we derive a differential equation relating curvature and torsion to characterize normal curves. We also demonstrate that for unit-speed normal curves, the distance function remains constant, and there exist specific relationships between the curvatures and different components of the curve. In E4, we extend these results by characterizing normal curves in terms of the curvatures k1, k2, and k3, establishing conditions for constant curvatures, and analyzing their normal and binormal components.
2020 Mathematics Subject Classification: 53A04; 53A05; 53A15.
Keywords: Serret-Frenet frame; normal curve; curvature; torsion.
References
Z. Bozkurt, I. Gök, O. Z. Okuyucu, and F. N. Ekmekci, Characterizations of rectifying, normal and osculating curves in three dimensional compact Lie groups, Life Sci. J., 10(3) (2013), 819-823.
C. Camci, L. Kula, and K. Ílarslan, Characterizations of the position vector of a surface curve in Euclidean 3-space, An. St. Univ. Ovidius Constanta, 19(3) (2011), 59-70. MR2879087. Zbl 1274.53001.
B. Y. Chen,When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Mon. 110(2) (2003), 147-152. MR1952443. Zbl 1035.53003.
B. Y. Chen and F. Dillen,Rectifying curves as centrodes and extremal curves, Bull. Inst. Math. Acad. Sinica, 33(2) (2005), 77-90. MR2151806. Zbl 1082.53012.
S. Deshmukh, B. Y. Chen, and S. H. Alshammari, On rectifying curves in Euclidean 3-space, Turkish J. Math., 42(2) (2018), 609-620. MR3794491. Zbl 1424.53021.
M. P. Do Carmo, Differential geometry of curves & surfaces, Dover Publications, Mineola, New York, 2016. MR3837152. Zbl 1352.53002.
K. Ílarslan, and E. Nešović, Some characterizations of osculating curves in the Euclidean spaces, Demonstr. Math., 41(4) (2008), 931-939. MR2484517. Zbl 1169.53003.
K. Ílarslan, and E. Nešović, Spacelike and timelike normal curves in Minkowski space-time, Publ. Inst. Math., 105 (2009), 111-118. MR2536693. Zbl 1289.53135.
K. Ílarslan, and E. Nešović, Some characterizations of rectifying curves in the Euclidean spaces E4, Turk. J. Math., 32(1) (2008), 21-30. MR2399839. Zbl 1148.53007.
M. S. Lone, Geometric invariants of normal curves under conformal transformation in E3, Tamkang J. Math., 53(1) (2022), 75-87. MR4367425. Zbl 1486.53007.
A. Pressley, Elementary differential geometry, Springer-Verlag, 2001. MR11800436. Zbl 0959.53001.
S. Sharma and K. Singh, Some aspects of rectifying curves on regular surfaces under different transformations, Int. J. Anal. Appl. 21 (2023), 78, 11 pp.
A. A. Shaikh and P. R. Ghosh, Rectifying and osculating curves on a smooth surface, Indian J. Pure Appl. Math. 51 (2020), 67-75. MR4076197. Zbl 1436.53005.
A. A. Shaikh, M. S. Lone, and P. R. Ghosh,Normal curves on a smooth immersed surface, Indian J. Pure Appl. Math. 51 (2020), 1343-1355. MR4195970. Zbl 1466.53006.
K. Singh, S. Sharma and M. S. Lone, Geometric invariants properties of osculating curves under conformal transformation in Euclidean space ℝ3, Demonstr. Math. 57(1) (2024), 20230145, 11 pp. MR4744893. Zbl 1541.53007.
K. Singh and S. Sharma,Some aspects of fundamental forms of surfaces and their interpretation, J. Math. Anal., 14(6) (2023), 10-22. MR4692098.
Absos Ali Shaikh
Department of Mathematics, The University of Burdwan,
Burdwan-713104, West Bengal, India.
e-mail: aashaikh@math.buruniv.ac.in
Pushpinder Badyal
School of Mathematics, Shri Mata Vaishno Devi University,
Katra-182320, Jammu and Kashmir, India.
e-mail: pushpinder4970@gmail.com
Sandeep Sharma
School of Mathematics, Shri Mata Vaishno Devi University,
Katra-182320, Jammu and Kashmir, India.
e-mail: sandeep.greater123@gmail.com
Kuljeet Singh
School of Mathematics, Shri Mata Vaishno Devi University,
Katra-182320, Jammu and Kashmir, India.
e-mail: kulljeet83@gmail.com
https://www.utgjiu.ro/math/sma