Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 20 (2025), 389 -- 402

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ON THE BAUM-CONNES CONJECTURE FOR D

Eugenia Ellis, Emanuel Rodríguez Cirone and Gisela Tartaglia

Abstract. One of the most significant contributions to the proof of the Baum-Connes conjecture was made by Higson and Kasparov. Their proof of the conjecture for a-T-menable groups is a highly technical achievement. Some details of this result were later exposed in a survey by Guentner and Higson, where the conjecture for ℤn is approached as an intermediate step to the general case. In this work we review the arguments given for ℤn in the aforementioned survey and show that they apply to the case of the infinite dihedral group.

2020 Mathematics Subject Classification: 46L80, 19K35
Keywords: Operator K-theory, Baum-Connes Conjecture, Equivariant E-theory

Full text

References

  1. P. Baum, A. Connes and N. Higson, Classifying space for proper actions and K-theory of group C*-algebras, C*-algebras: 1943--1993, San Antonio, TX, 1993. Contemp. Math. 167 Amer. Math. Soc., Providence, RI (1994), 240--291. MR1292018. Zbl830.46061.

  2. C. Beguin, H. Bettaieb, A. Valette,K-theory for C*-algebras of one-relator group, K-theory, 16 (1999), 277-298. MR1681180. Zbl932.46063.

  3. J. F. Davis and W. Lück, Spaces over a category and assembly maps in isomorphism conjectures in K-and L-theory, K-Theory 3 (1998), 201--252. MR1659969. Zbl921.19003.

  4. E. Ellis, E. Rodríguez Cirone, G. Tartaglia, S. Vega, Two examples of vanishing and squeezing in K1, New York J. Math. 26 (2020) 607--635. MR4108763. Zbl1454.19001

  5. M.P. Gomez Aparicio, P. Julg, and A. Valette, The Baum-Connes conjecture: an extended survey, Advances in noncommutative geometry. Based on the noncommutative geometry conference, Shanghai, China, March 23 -- April 7, 2017. On the occasion of Alain Connes' 70th Birthday, (2019) 177--244. MR4300553. Zbl1447.58006.

  6. P. Green, Equivariant K-theory and crossed product C*-algebras, Operator Algebras and Applications, Proceedings of Symposia in Pure Mathematics 38, American Mathematical Society (1982) 337--338. MR679491. Zbl0546.46056.

  7. E. Guentner, N. Higson, J. Trout, Equivariant E-theory for C*-algebras, Memoirs of the AMS 148, American Mathematical Society (2000). MR1711324. Zbl983.19003.

  8. N. Higson, E. Guentner, Group C*-algebras and K-theory, Noncommutative geometry, Lecture Notes in Math. 1831, Springer, Berlin (2004) 137--251. MR2058474. Zbl1053.46048

  9. N. Higson, G. Kasparov, A Bott periodicity theorem for infinite dimensional Euclidean space, Adv. Math. 135, (1998) 1--40. MR1617411. Zbl911.46040.

  10. N.Higson, G. Kasparov, E-theory and KK-theory for groups which act properly and isometrically on Hilbert space, Invent. Math. 144 (2001) 23--74. MR1821144. Zbl988.19003.

  11. N. Higson, V. Lafforgue, G. Skandalis, Counterexamples to the Baum-Connes conjecture, Geom. Funct. Anal. 12 (2002) 330--354. MR1911663. Zbl1014.46043.

  12. P. Julg, K-theorie equivariant et produits croises, Comptes Rendus Acad. Sci. Paris 292 (1981) 629--632. MR0625361. Zbl0461.46044.

  13. J. Kranz, An identification of the Baum-Connes and Davis-Lück assembly maps, Münster J. of Math. 14 (2021) 509--536. MR4359841. Zbl1485.46076

  14. V. Lafforgue, La conjecture de Baum-Connes a coefficients pour les groupes hyperboliques, J. Noncommut. Geom. 6 No.1 (2012) 1--197. MR2874956. Zbl1328.19010.

  15. R.J. Sánchez-Garc\ia, Equivariant \(K\)-homology for some Coxeter groups, J. Lond. Math. Soc., II. Ser. 75 No.3 (2007) 773--790. MR2352735. Zbl1175.19004.

  16. D.P. Williams, Crossed products of C*-algebras, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 134 (2007), xvi+528. MR2288954. Zbl1119.46002.



Eugenia Ellis
IMERL, Fac. de Ingeniería, Universidad de la República, Montevideo, Uruguay.
email: eellis@fing.edu.uy

Emanuel Rodríguez Cirone
Área de Matemática - CBC - UBA, Buenos Aires, Argentina.
e-mail:erodriguezcirone@cbc.uba.ar

Gisela Tartaglia - Corresponding author
CMaLP - CONICET, FCE-UNLP, La Plata, Argentina.
e-mail: gtartaglia@mate.unlp.edu.ar


https://www.utgjiu.ro/math/sma