Departamentul de Matematica


Pentru prepublicaţii, cărţi şi note de curs vizitaţi paginile WEB ale membrilor departamentului.

O listă (incompletă) a lucrărilor indexate (Mathematical Reviews şi/sau Zentralblatt):

2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1980-1999.
2010
2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1980-1999.
2009

2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1980-1999.
2008

2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1980-1999.
2007

2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1980-1999.
2006

2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1980-1999.
2005
  • M. Buneci, Amenable equivariant maps defined on a groupoid. Advances in operator algebras and mathematical physics (eds. F.P. Boca, O. Bratteli, R.Longo, H. Siedentop), 25-41, Theta Ser. Adv. Math., 5, Theta, Bucharest, 2005. MR2238280(2008g:43001), Zbl pre05595229.

  • M. Buneci, An application of Mackey's selection lemma. Studia Universitatis Babes-Bolyai, Matematica 50 no. 4 (2005), 23-31. MR2247528(2008g:22004), Zbl 1111.22005.

  • M. Buneci, A notion of open generalized morphism that carries amenability . Acta Univ. Apulensis Math. Inform. No. 10 (2005) - Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics (ICTAMI 2005)-Part A, 177-187. MR2240133(2007c:22001), Zbl 1113.22001.

  • M. Buneci, Isomorphic groupoid C*-algebras associated with different Haar systems. New York J. Math. 11, 225-245 (2005). MR2154355(2007e:43003), Zbl 1091.43001.

  • M. Buneci, Morphisms that are continuous on a neighborhood of the base of a groupoid. Studia Sci. Math. Hungar. 42 (3) (2005), 265-276. MR2208021(2006m:22004), Zbl 1120.22300.

  • M. Buneci, The equality of the reduced and the full C*-algebras and the amenability of a topological groupoid. Recent advances in operator theory, operator algebras, and their applications, Oper. Theory Adv. Appl, Birkhauser Verlag, Basel/Switzerland, Vol. 153 (2005), 61-78. MR2105469(2005m:46089), Zbl 1062.22004.

  • D. Covei, A few results about the p-Laplace's operator. Acta Univ. Apulensis, Math. Inform. 10 (2005), 105-115. MR2240126, Zbl 1113.35312.

  • D. Covei, Existence and uniqueness of positive solutions to a quasilinear elliptic problem in RN. Electron. J. Differential Equations 2005, No. 139, 15 pp. MR2181283(2006h:35074), Zbl pre05002708.

  • V. Lupulescu and M. Necula, A viability result for nonlinear functional differential inclusions. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 51 (2005), no. 2, 319-336. MR2228423(2007b:34148), Zbl pre05117409.

  • A. Cernea and V. Lupulescu, Potential type functional differential inclusions, An. Univ. Bucur., Mat. 54 (2005), no. 2, 223-228. MR2297294(2007k:34032), Zbl 1150.34530.

  • A. Cernea and V. Lupulescu, On a class of differential inclusions governed by a sweeping process. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 48(96) (2005), no. 4, 361-367. MR2192514(2006i:34027), Zbl 1120.34007.

  • V. Lupulescu and M. Necula, A viability result for nonconvex semilinear functional differential inclusions. Discuss. Math. Differ. Incl. Control Optim. 25 (2005), 109-128. MR2228423(2007b:34148), Zbl 1119.34057.

  • A. Cernea and V. Lupulescu, Viable solutions for a class of nonconvex functional differential inclusions, Mathematical Reports, 7 (57) (2) (2005), 91-103. MR2153589(2006c:34029), Zbl 1100.34049.

  • V. Lupulescu, An existence result for a class of nonconvex functional differential inclusions, Acta Universitatis Apulensis, 9 (2005), 49-56. MR2158472(2006e:34031), Zbl pre05018825.

  • V. Lupulescu, Viable solutions for second order nonconvex functional differential inclusions, Electronic Journal of Differential Equations, Vol. 2005 (2005), No. 110, 1-11. MR2174542(2006f:34027), Zbl 1096.34062.

  • V. M. Ungureanu, Tracking problem for linear periodic, discrete-time stochastic systems in Hilbert spaces. Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics. Part A. Acta Univ. Apulensis Math. Inform. No. 10 (2005), 215--224. MR2240136(2007a:93118), Zbl 1113.93107.

  • V. M. Ungureanu, Cost of tracking for differential stochastic equations in Hilbert spaces, Studia Universitatis Babes-Bolyai, Matematica 50 no. 4 (2005), 73-81.

  • MR2247532(2007k:93145), Zbl 1113.60061.

  • V. M. Ungureanu, Uniform exponential stability and uniform observability for time-varying linear stochastic systems, Operator Theory: Advances and Applications, Birkhauser Verlag Basel, vol. 153 (2005), 287-306. Proceedings to the 19th international Conference on Operator Theory, edit D. Gaspar etc. MR2105484(2006d:60099), Zbl 1062.60064.

  • V. M.Ungureanu, The quadratic control for linear discrete time systems with independent random perturbations in Hilbert spaces connected with uniform observability, Acta Math. Univ. Comenianae, vol. LXXIV, 1 (2005), 107-126. MR2154401(2006j:93097b), Zbl 1107.49026.

  • V. M. Ungureanu, Quadratic control problem for linear discrete -time varying systems with multiplicative noise in Hilbert spaces, Mathematical Reports 7 (57) (2005), 73-89. MR2153453(2006j:93097a), Zbl 1097.93039.

  • V. M. Ungureanu, Quadratic control of affine discrete-time, periodic systems with independent random perturbations, Portugalia Matematicae, 62 Fasc. 3. (2005) (NS), 303-324. MR2171676(2006f:49056).


2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1980-1999.
2004
  • M. Buneci, Necessary and sufficient conditions for the continuity of a pre-Haar system at a unit with singleton orbit, Quasigroups and Related Systems 12 (2004), 29-38. MR2130577(2005m:22002), Zbl 1061.22004.

  • M. Iovanov, Determining of an extremal domain for the functions from the S-class. Acta Univ. Apulensis Math. Inform. No. 7 (2004), 135-148. MR2157956, Zbl 1114.30301.

  • V. Lupulescu and M. Necula, Viability and local invariance for non-convex semilinear differential inclusions, Nonlinear Functional Analysis and Applications, 9 (3) (2004), 495-512. MR2101195(2005g:34145), Zbl 1073.34077.

  • V. Lupulescu, Continuous selections of solutions sets to second order evolution equations, Acta Universitatis Apulensis, 7 (2004), 163-170. MR2157959(2006b:34141), Zbl 1114.35312.

  • V. Lupulescu, Existence of solutions for nonconvex functional differential inclusions, Electronic Journal of Differential Equations, Vol. 2004 (2004), No. 141, pp. 1-6. MR2108912(2006i:34030), Zbl 1075.34055.

  • V. M. Ungureanu, Exponential stability of stochastic discrete-time, periodic systems in Hilbert spaces, Acta Univ. Apulensis Math. Inform. 7 (2004), 209-218. MR2157966 (2006g:93149), Zbl 1107.93034 .

  • V. M. Ungureanu, Uniform exponential stability for linear discrete time systems with stochastic perturbations in Hilbert spaces, Bolletino dell Unione Matematica Italiana 8 7-B (2004), 757 - 772. MR2101664(2005f:93159), Zbl pre05121670.

  • V. M. Ungureanu, Representations of mild solutions of time-varying linear stochastic equations and the exponential stability of periodic systems, Electronic Journal of Qualitative Theory of Differential Equations, 4 (2004), 1-22. MR2039027(2004m:60143), Zbl 1072.60047.


2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1980-1999.
2003

2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1980-1999.
2002

2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1980-1999.
2001
  • M. Buneci, C*-algebras associated to the transitive groupoids. An. Univ. Craiova Ser. Mat. Inform, 28 (2001), 79-92. MR1902038(2003b:46085), Zbl 1069.46510.

  • C. Buşe, S.S. Dragomir and V. Lupulescu, Characterization of stability for strongly continuous semigroups by boundedness of its convolutions with almost periodic functions. Interantional Journal of Differential Equations and Applications, vol. 2 (2001) No.1, 103-109. MR2006440(2004f:47053).

  • V. M. Ungureanu, Uniform exponential stability for linear discrete time systems with stochastic perturbations, Analele Universitatii din Craiova, Seria Matematica - Informatica, vol 28 (2001), 194-204. MR1902049(2003g:93102), Zbl 1065.93035.


2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1980-1999.
2000
  • V. Lupulescu and Şt. Mirică, Verifications Theorems for Discontinuous Value Functions in Optimal Control. Math. Reports, vol. 2 (52), No.3, 2000, 299-326. MR1889614(2003d:49040).


2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1980-1999.
1980-1999
  • V. M. Ungureanu, Exponential dichotomy of stochastic differential equations. Analele Universitatii din Timisoara, Seria Matematica-Informatica, vol. 27 (1999), fasc.1,149-158. MR1878372(2003c:34092), Zbl 1013.34048.

  • V. Lupulescu and Şt. Mirică, End-point monotonicity of real functions anal application. An. Şt. Univ. Ovidius Constanţa, vol 6 (1998), 89-96. MR1695051 (2000e:49024), Zbl 0972.26006.

  • I. Chiriac, Singletons in the set "germ". 3rd National Conference on Mathematical Analysis and Applications (Timişoara, 1998). An. Univ. Timişoara Ser. Mat.-Inform. 36 (1998), no. 2, 219-230. MR1883669 (2003c:54004), Zbl 0997.54004.

  • I. Chiriac, Singletons in the set ''GERM'' (English). Seminarul de Analiză Matematică şi Aplicaţii în Teoria Controlului. Preprint Series in Mathematics. 80. Timişoara: West Univ. of Timişoara, Dept. of Mathematics, 11p. (1997). Zbl 0893.54002.

  • Cătălin Bărbăcioru and Carmen Bărbăcioru, The topology of implicative BCK-Algebras Math. Japon. 41 (1995), no. 3, 595-601. MR1339022 (96c:06031).

  • Cătălin Bărbăcioru and Carmen Bărbăcioru, Pseudocomplemented distributive lattices with finite co-irreducible dimension, An. Univ. Craiova, Ser. Mat. Inf. 19 (1994), 36-40. MR1650176, Zbl 0846.06008.

  • M. Iovanov, The annulus of α-convexity for univalent functions. Mathematica (Cluj) 32 (55) (1990), no. 2, 135-140. MR1159902, Zbl 0773.30006.

  • M. Iovanov, The annulus of α-convexity for univalent functions. Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca, 1989), 167-174, Preprint, 89-6, Univ. "Babes-Bolyai", Cluj-Napoca, 1989. MR1046651(91b:30037), Zbl 0682.30007.

  • M. Iovanov, Annulus of convexity for single-valued functions . (Romanian) Stud. Cerc. Mat. 38 (1986), no. 2, 165-183. MR0856734(88e:30031), Zbl 0614.30021.

  • P. Mocanu and M. Iovanov, The effect of certain integral operator on functions of bounded turning and starlike functions. (English) Prepr., "Babes-Bolyai" Univ., Fac. Math., Res. Semin. 5, 83-90 (1986). Zbl 0619.30010.

  • M. Iovanov, The annulus of starlikeness for univalent functions . Anal. Numer. Theor. Approx. 13 (1984), no. 2, 111-124. MR0797974(86k:30012), Zbl 0554.30009.

  • M. Iovanov, On the equation f(z)=(β z+α)f(a) in the class of univalent functions. Anal. Numér. Théor. Approx. 13 (1984), no. 1, 33-43. MR0797797(87a:30019).

  • M. Iovanov, The annulus of convexity for univalent functions. Itinerant seminar on functional equations, approximation and convexity (Cluj-Napoca, 1984), 77-80, Preprint, 84-6, Univ. "Babes-Bolyai", Cluj-Napoca, 1984. MR0788725(86g:30031), Zbl 0548.30014.


2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1980-1999.



GOOGLE
WWW www.utgjiu.ro/math/


Universitatea Constantin Brâncuşi din Târgu Jiu, Faculatea de Inginerie
Calea Eroilor, nr.30, cod 210135 Târgu Jiu, România.
Telefon: 0040/253/215848 (Faculatea de Inginerie)
Fax: 0040/253/215794 (Faculatea de Inginerie)
E-mail: math@utgjiu.ro