|
|
|
|
| |
For prepublications, books and lecture notes please, visit the webpages of the department members and see bellow a list their indexed papers.
2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1980-1999.
2010
2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1980-1999.
D. Covei, Existence and uniqueness of solutions for the Lane, Emden and Fowler type problem. Nonlinear Anal., Theory Methods Appl. 72 (2010), No. 5 (A), 2684-2693. MR2577828, Zbl 1182.35113.
V. Lupulescu and A. Zada, Linear impulsive dynamic systems on time scales. Electronic journal of qualitative theory of differential equations 11 (2010), 1-30.
2009
M. Buneci, A generalization of Zakrzewski morphisms. Advanced Studies in Contemporary Mathematics 59 (19), (2009), no. 2, 223-240. MR2566919.
D. Covei, A Lane-Emden-Fowler type problem with singular nonlinearity. J. Math. Kyoto Univ. 49 (2009), no. 2, 325-338. MR2571844, Zbl pre05660784.
D. Covei, Large and entire large solution for a quasilinear problem. Nonlinear Anal., Theory Methods Appl. 70 (2009), No. 4 (A), 1738-1745. MR2483595(2010a:35055), Zbl 1168.35355.
D. Covei, Non-existence result for radially symmetric solutions to the Lane-Emden-Fowler equations. Nonlinear Anal., Theory Methods Appl. 70 (2009), No. 1 (A), 563-566. MR2468262, Zbl 1160.35400.
V. Lupulescu, On a class of fuzzy functional differential equations. Fuzzy Sets and Systems 160 (2009), no. 11, 1547-1562. MR2510141(2010e:34137), Zbl pre05634457.
V. M. Ungureanu, Optimal control of linear stochastic evolution equations in Hilbert spaces and uniform observability. Czechoslovak Math. J. 59 (134), (2009), no. 2, 317-342. MR2532378.
V. M. Ungureanu, Optimal control for linear discrete-time systems with Markov perturbations in Hilbert spaces. IMA J. Math. Control Inf.26 (2009), no. 1, 105-127. MR2487430(2010a:90117), Zbl 1159.93036.
2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1980-1999.
2008
Carmen Bărbăcioru, Integral mean for fuzzy random variables, Creative Math. & Inf., 17 (2008), no. 3, 293 - 297.
M. Buneci, Borel morphisms and C*-algebras. Hot topics in operator theory, Theta Ser. Adv. Math., 9, Theta, Bucharest, 2008, 23-37. MR2436750(2009i:22003), Zbl pre05649025.
M. Buneci, Groupoid categories. Perspectives in operator algebras and mathematical physics, Theta Ser. Adv. Math., 8, Theta, Bucharest, 2008, 27-40. MR2433025(2010b:22007), Zbl pre05634995.
D. Covei, Existence and asymptotic behavior of positive solution to a quasilinear elliptic problem in RN. Nonlinear Anal., Theory Methods Appl. 69 (2008), No. 8 (A), 2615-2622. MR2446357. Zbl 1157.35366.
D. Covei, Corrigendum to: ''Existence of positive solution to a quasilinear elliptic problem in RN''. Surv. Math. Appl. 3 (2008), 211-212. MR2470210.
V. Lupulescu, Causal functional differential equations in Banach spaces. Nonlinear Anal. 69 (2008), no. 12, 4787-4795. MR2467270 , Zbl 1176.34093.
V. Lupulescu, Initial value problem for fuzzy differential equations under dissipative conditions. Inform. Sci. 178 (2008), no. 23, 4523-4533. MR2467124.
V. Lupulescu, Successive approximations to solutions of set differential equations in Banach spaces. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 15 (2008), no. 3, 391-401. MR2406754(2009a:34009), Zbl 1153.34037.
V. M. Ungureanu, Stochastic uniform observability of linear differential equations with multiplicative noise, J. Math. Anal. Appl. 343, No. 1 (2008), 446-463. MR2412142, Zbl 1147.60043.
V. M. Ungureanu and S. S. Cheng, Mean stability of a stochastic difference equation, Ann. Pol. Math. 93, No. 1 (2008), 33-52. MR2383340, Zbl 1141.37037.
V. M. Ungureanu, Stochastic uniform observability of general linear differential equations, Dyn. Syst. 23, No. 3 (2008), 333-350. MR2455264, Zbl 1155.93017.
2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1980-1999.
2007
M. Buneci, C*-norms on the algebra of continuous functions with compact support on a locally compact groupoid, An. Univ. Vest Timiş. Ser. Mat.-Inform. 45 no. 1 (2007), 91-107. MR2371088(2009j:46172), Zbl 1150.22001.
I. Chiriac, Non-degenerate real hypersurfaces of a paraquaternionic Kähler manifold. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 53 (2007), no. 1, 127-136. MR2351599(2008i:53067), Zbl 1150.53017.
A. Cernea and V. Lupulescu, Existence of viable solutions for a class of nonconvex differential inclusions with memory. Mathematica 49 (72) (2007), no. 1, 21-28. MR2364026 (2008i:34022).
V. Lupulescu, On a class of functional differential equations. An. Univ. Vest Timiş. Ser. Mat.-Inform. 45, no. 2 (2007), 23-31. Zbl 1174.34002.
T. Donchev and V. Lupulescu, Discrete approximations of singularly perturbed systems. Boyanov, Todor (ed.) et al., Numerical methods and applications. 6th international conference, NMA 2006, Borovets, Bulgaria, August 20-24, 2006. Revised papers. Berlin: Springer. Lecture Notes in Computer Science 4310, 304-311 (2007). Zbl 1137.65375.
2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1980-1999.
2006
M. Buneci, Haar systems compatible with groupoid morphisms. An. Univ. Vest Timiş. Ser. Mat.-Inform. 44 no. 2 (2006), 19-31. MR2368682(2009a:22002), Zbl 1164.22307.
M. Buneci, Groupoid C*-algebras. Surv. Math. Appl. 1 (2006), 71-98. MR2274294(2007h:46067), Zbl 1130.22002.
M. Buneci, C*algebras associated to groupoids with proper orbit space. Operator theory 20, Theta Ser. Adv. Math., 6, Theta, Bucharest, 2006, 45-53. MR2276931(2008j:43002), Zbl pre05595463.
N. Chiriac, Normal anti-invariant submanifolds of paraquaternionic Kähler manifolds. Surv. Math. Appl. 1 (2006), 99-109. MR2274295(2007i:53046), Zbl 1139.53015.
D. Covei, Existence of positive solutions to a semilinear problem. An. Univ. Oradea, Fasc. Mat. 13 (2006), 125-132. MR2244717(2007d:35082), Zbl pre05375045.
D. Covei, Existence of positive solution to a quasilinear elliptic problem in RN. Surv. Math. Appl. 1 (2006), 111-116. MR2274296, Zbl pre05178426.
M. Iovanov, An extremal problem for univalent functions. An. Univ. Oradea, Fasc. Mat. 13 (2006), 191-194. MR2244724, Zbl pre05530438.
V. Lupulescu and M. Necula, A viable result for nonconvex differential inclusions with memory. Port. Math. (N.S.) 63 (2006), no. 3, 335-350. MR2254933(2007e:34026), Zbl 1114.34043.
V. M. Ungureanu, Representation theorem for stochastic differential equations in Hilbert spaces and its applications. Surv. Math. Appl. 1 (2006), 117-134. MR2274297(2008a:60150), Zbl 1118.37036.
V. M. Ungureanu, Almost sure tracking for linear discrete-time periodic systems with independent random perturbations. Appl. Math. E-Notes 6 (2006), 33--40 (electronic). MR2209004(2006i:93102), Zbl 1152.93482.
V. M. Ungureanu, Tracking problem for linear discrete-time stochastic systems in Hilbert spaces and the uniform observability. An. Univ. Oradea Fasc. Mat. 13(2006), 273--286. MR2244729(2007b:93157). Zbl pre05508289.
2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1980-1999.
2005
M. Buneci, Amenable equivariant maps defined on a groupoid. Advances in operator algebras and mathematical physics (eds. F.P. Boca, O. Bratteli, R.Longo, H. Siedentop), 25-41, Theta Ser. Adv. Math., 5, Theta, Bucharest, 2005. MR2238280(2008g:43001), Zbl pre05595229.
M. Buneci, An application of Mackey's selection lemma. Studia Universitatis Babes-Bolyai, Matematica 50 no. 4 (2005), 23-31. MR2247528(2008g:22004), Zbl 1111.22005.
M. Buneci, A notion of open generalized morphism that carries amenability . Acta Univ. Apulensis Math. Inform. No. 10 (2005) - Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics (ICTAMI 2005)-Part A, 177-187. MR2240133(2007c:22001), Zbl 1113.22001.
M. Buneci, Isomorphic groupoid C*-algebras associated with different Haar systems. New York J. Math. 11, 225-245 (2005). MR2154355(2007e:43003), Zbl 1091.43001.
M. Buneci, Morphisms that are continuous on a neighborhood of the base of a groupoid. Studia Sci. Math. Hungar. 42 (3) (2005), 265-276. MR2208021(2006m:22004), Zbl 1120.22300.
M. Buneci, The equality of the reduced and the full C*-algebras and the amenability of a topological groupoid. Recent advances in operator theory, operator algebras, and their applications, Oper. Theory Adv. Appl, Birkhauser Verlag, Basel/Switzerland, Vol. 153 (2005), 61-78. MR2105469(2005m:46089), Zbl 1062.22004.
D. Covei, A few results about the p-Laplace's operator. Acta Univ. Apulensis, Math. Inform. 10 (2005), 105-115. MR2240126, Zbl 1113.35312.
D. Covei, Existence and uniqueness of positive solutions to a quasilinear elliptic problem in RN. Electron. J. Differential Equations 2005, No. 139, 15 pp. MR2181283(2006h:35074), Zbl pre05002708.
V. Lupulescu and M. Necula, A viability result for nonlinear functional differential inclusions. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 51 (2005), no. 2, 319-336. MR2228423(2007b:34148), Zbl pre05117409.
A. Cernea and V. Lupulescu, Potential type functional differential inclusions, An. Univ. Bucur., Mat. 54 (2005), no. 2, 223-228. MR2297294(2007k:34032), Zbl 1150.34530.
A. Cernea and V. Lupulescu, On a class of differential inclusions governed by a sweeping process. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 48(96) (2005), no. 4, 361-367. MR2192514(2006i:34027), Zbl 1120.34007.
V. Lupulescu and M. Necula, A viability result for nonconvex semilinear functional differential inclusions. Discuss. Math. Differ. Incl. Control Optim. 25 (2005), 109-128. MR2228423(2007b:34148), Zbl 1119.34057.
A. Cernea and V. Lupulescu, Viable solutions for a class of nonconvex functional differential inclusions, Mathematical Reports, 7 (57) (2) (2005), 91-103. MR2153589(2006c:34029), Zbl 1100.34049.
V. Lupulescu, An existence result for a class of nonconvex functional differential inclusions, Acta Universitatis Apulensis, 9 (2005), 49-56. MR2158472(2006e:34031), Zbl pre05018825.
V. Lupulescu, Viable solutions for second order nonconvex functional differential inclusions, Electronic Journal of Differential Equations, Vol. 2005 (2005), No. 110, 1-11. MR2174542(2006f:34027), Zbl 1096.34062.
V. M. Ungureanu, Tracking problem for linear periodic, discrete-time stochastic systems in Hilbert spaces. Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics. Part A. Acta Univ. Apulensis Math. Inform. No. 10 (2005), 215--224. MR2240136(2007a:93118), Zbl 1113.93107.
- MR2247532(2007k:93145), Zbl 1113.60061.
V. M. Ungureanu, Cost of tracking for differential stochastic equations in Hilbert spaces, Studia Universitatis Babes-Bolyai, Matematica 50 no. 4 (2005), 73-81.
V. M. Ungureanu, Uniform exponential stability and uniform observability for time-varying linear stochastic systems, Operator Theory: Advances and Applications, Birkhauser Verlag Basel, vol. 153 (2005), 287-306. Proceedings to the 19th international Conference on Operator Theory, edit D. Gaspar etc. MR2105484(2006d:60099), Zbl 1062.60064.
V. M.Ungureanu, The quadratic control for linear discrete time systems with independent random perturbations in Hilbert spaces connected with uniform observability, Acta Math. Univ. Comenianae, vol. LXXIV, 1 (2005), 107-126. MR2154401(2006j:93097b), Zbl 1107.49026.
V. M. Ungureanu, Quadratic control problem for linear discrete -time varying systems with multiplicative noise in Hilbert spaces, Mathematical Reports 7 (57) (2005), 73-89. MR2153453(2006j:93097a), Zbl 1097.93039.
V. M. Ungureanu, Quadratic control of affine discrete-time, periodic systems with independent random perturbations, Portugalia Matematicae, 62 Fasc. 3. (2005) (NS), 303-324. MR2171676(2006f:49056).
2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1980-1999.
2004
M. Buneci, Necessary and sufficient conditions for the continuity of a pre-Haar system at a unit with singleton orbit, Quasigroups and Related Systems 12 (2004), 29-38. MR2130577(2005m:22002), Zbl 1061.22004.
M. Iovanov, Determining of an extremal domain for the functions from the S-class. Acta Univ. Apulensis Math. Inform. No. 7 (2004), 135-148. MR2157956, Zbl 1114.30301.
V. Lupulescu and M. Necula, Viability and local invariance for non-convex semilinear differential inclusions, Nonlinear Functional Analysis and Applications, 9 (3) (2004), 495-512. MR2101195(2005g:34145), Zbl 1073.34077.
V. Lupulescu, Continuous selections of solutions sets to second order evolution equations, Acta Universitatis Apulensis, 7 (2004), 163-170. MR2157959(2006b:34141), Zbl 1114.35312.
V. Lupulescu, Existence of solutions for nonconvex functional differential inclusions, Electronic Journal of Differential Equations, Vol. 2004 (2004), No. 141, pp. 1-6. MR2108912(2006i:34030), Zbl 1075.34055.
V. M. Ungureanu, Exponential stability of stochastic discrete-time, periodic systems in Hilbert spaces, Acta Univ. Apulensis Math. Inform. 7 (2004), 209-218. MR2157966 (2006g:93149), Zbl 1107.93034 .
V. M. Ungureanu, Uniform exponential stability for linear discrete time systems with stochastic perturbations in Hilbert spaces, Bolletino dell Unione Matematica Italiana 8 7-B (2004), 757 - 772. MR2101664(2005f:93159), Zbl pre05121670.
V. M. Ungureanu, Representations of mild solutions of time-varying linear stochastic equations and the exponential stability of periodic systems, Electronic Journal of Qualitative Theory of Differential Equations, 4 (2004), 1-22. MR2039027(2004m:60143), Zbl 1072.60047.
2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1980-1999.
2003
M. Buneci, Topologies on the graph of the equivalence relation associated to a groupoid. Acta Univ. Apulensis Math. Inform No. 6 (2003). - Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics ICTAMI 2003-Part A, 23-32. MR2060684(2005c:22008), Zbl 1100.22003.
M. Buneci, Amenable unitary representations of measured groupoids. Rev. Roumaine Math. Pures Appl., 48 (2003), no. 2, 129-133. MR1999014(2004f:22004), Zbl 1045.22004.
M. Buneci, Invariant means on groupoids. Rev. Roumaine Math. Pures Appl., 48 (2003), no. 1, 13-29. MR1998058(2004i:43002), Zbl 1045.22003.
M. Buneci, Groupoid algebras for transitive groupoids. Math. Reports, vol. 5 (55), no. 1 (2003), 9-26. MR2067938(2005e:43001), Zbl 1054.43001.
M. Buneci, Haar systems and homomorphism on groupoids. Operator algebras and mathematical physics (Constanţa, 2001) (eds. J-M. Combes, J. Cuntz, G. Elliott, Gh. Nenciu, H. Siedentop, Ş. Strătilă), 35-49, Theta, Bucharest, 2003. MR2018222(2004j:22006).
A. Bejancu, I. Chiriac and L. A-M. Hanna, Remarkable linear connections on fiber bundles. Math. J. Toyama Univ. 26 (2003), 131-144. MR2048398(2004m:53039), Zbl 1078.53019.
M. Predoi and I. Chiriac, Anti-topological construction of R. Bull. Soc. Math. Banja Luka 10 (2003), 1-9. MR2040318(2004k:26002).
V. Lupulescu, Existence of solutions to a class of non convex second order diferential inclusions,Appl. Math. E-Notes, 3(2003). MR1980574(2004d:34031), Zbl 1034.34018.
V. Lupulescu, Existence of solutions to a class of second order differential inclusions, An. Univ. Craiova Ser. Mat. Inform., 30(2003), 1-7. MR2064629(2005e:34028).
V. Lupulescu, Exponential stability of linear and almost periodic systems on Banach spaces, Electron. J. Differ. Equ., 2003, Paper No.125, 7 p.(with C. Buşe). MR2022073(2004i:47076), Zbl 1043.35022.
V. M. Ungureanu, Exponential stability of stochastic linear discrete -time systems with periodic coefficients in Hilbert spaces, Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics, Alba Iulia (Romania), 2003. MR2157966.
V. M. Ungureanu, Riccati equation of stochastic control and stochastic and stochastic uniform observability in infinite dimensions, Analysis and Optimization of Differential Systems, Edit. V. Barbu, I Lasiecka, D. Tiba, C. Varsan, Kluwer Academic Publishers, Boston/Dordrecht/London, 2003. MR1993734(2004g:93156), Zbl 1071.93014.
2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1980-1999.
2002
M. Buneci, Haar systems on a groupoid whose orbit space is an analytic Borel space. Proceedings of the 3rd International Conference on Applied Mathematics (Borşa, 2002). Bul. Ştiinţ. Univ. Baia Mare Ser. B Fasc. Mat.-Inform. 18 (2002), no. 2, 159-164. MR2015938, Zbl 1031.22001.
M. Buneci, The structure of the Haar systems on locally compact groupoids. Math. Phys. Electron. J. 8 (2002) Paper 4, 11 pp. (electronic). MR1978500(2004c:46102), Zbl 1023.46057.
M. Buneci, Consequences of the Hahn structure theorem for Haar measure. Math. Reports, vol. 4 (54), nr. 4(2002), 321-334. MR2067412(2007k:28017), Zbl 1058.22004.
V. Lupulescu, A variability result for second order differential inclusions. Electronic Journal of Differential Equations, Vol. 2002 (2002), No. 76, pp. 1-12. MR1927890(2003g:34029), Zbl 1023.34010.
V. Lupulescu, Existence of solutions for a class of nonconvex second order differential inclusions. An. Univ. Craiova Ser. Mat. Inform. 29 (2002), 120-126. MR2064905(2005e:34027), Zbl 1073.34504.
V. Lupulescu, On differentiability with respect to parameters of the Lebesgue integral. JIPAM, J. Inequal. Pure Appl. Math. No. 4 (2002), Paper No.64, 12 pp. MR1923363(2003g:26009), Zbl 1029.26003.
V. M. Ungureanu, On uniform observability of linear discrete-time systems. Proceedings of the 3rd International Conference on Applied Mathematics (Borsa, 2002), Bul. Stiint. Univ. Baia Mare, Ser. B Fasc. Mat.-Inform. 18 (2002), no. 2, 367-372. MR2015967, Zbl 1032.60044.
2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1980-1999.
2001
M. Buneci, C*-algebras associated to the transitive groupoids. An. Univ. Craiova Ser. Mat. Inform, 28 (2001), 79-92. MR1902038(2003b:46085), Zbl 1069.46510.
C. Buşe, S.S. Dragomir and V. Lupulescu, Characterization of stability for strongly continuous semigroups by boundedness of its convolutions with almost periodic functions. Interantional Journal of Differential Equations and Applications, vol. 2 (2001) No.1, 103-109. MR2006440(2004f:47053).
V. M. Ungureanu, Uniform exponential stability for linear discrete time systems with stochastic perturbations, Analele Universitatii din Craiova, Seria Matematica - Informatica, vol 28 (2001), 194-204. MR1902049(2003g:93102), Zbl 1065.93035.
2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1980-1999.
2000
V. Lupulescu and Şt. Mirică, Verifications Theorems for Discontinuous Value Functions in Optimal Control. Math. Reports, vol. 2 (52), No.3, 2000, 299-326. MR1889614(2003d:49040).
2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1980-1999.
1980-1999
V. M. Ungureanu, Exponential dichotomy of stochastic differential equations. Analele Universitatii din Timisoara, Seria Matematica-Informatica, vol. 27 (1999), fasc.1,149-158. MR1878372(2003c:34092), Zbl 1013.34048.
V. Lupulescu and Şt. Mirică, End-point monotonicity of real functions anal application. An. Şt. Univ. Ovidius Constanţa, vol 6 (1998), 89-96. MR1695051 (2000e:49024), Zbl 0972.26006.
I. Chiriac, Singletons in the set "germ". 3rd National Conference on Mathematical Analysis and Applications (Timişoara, 1998). An. Univ. Timişoara Ser. Mat.-Inform. 36 (1998), no. 2, 219-230. MR1883669 (2003c:54004), Zbl 0997.54004.
I. Chiriac, Singletons in the set ''GERM'' (English). Seminarul de Analiză Matematică şi Aplicaţii în Teoria Controlului. Preprint Series in Mathematics. 80. Timişoara: West Univ. of Timişoara, Dept. of Mathematics, 11p. (1997). Zbl 0893.54002.
Cătălin Bărbăcioru and Carmen Bărbăcioru, The topology of implicative BCK-Algebras Math. Japon. 41 (1995), no. 3, 595-601. MR1339022 (96c:06031).
Cătălin Bărbăcioru and Carmen Bărbăcioru, Pseudocomplemented distributive lattices with finite co-irreducible dimension, An. Univ. Craiova, Ser. Mat. Inf. 19 (1994), 36-40. MR1650176, Zbl 0846.06008.
M. Iovanov, The annulus of α-convexity for univalent functions. Mathematica (Cluj) 32 (55) (1990), no. 2, 135-140. MR1159902, Zbl 0773.30006.
M. Iovanov, The annulus of α-convexity for univalent functions. Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca, 1989), 167-174, Preprint, 89-6, Univ. "Babes-Bolyai", Cluj-Napoca, 1989. MR1046651(91b:30037), Zbl 0682.30007.
M. Iovanov, Annulus of convexity for single-valued functions . (Romanian) Stud. Cerc. Mat. 38 (1986), no. 2, 165-183. MR0856734(88e:30031), Zbl 0614.30021.
P. Mocanu and M. Iovanov, The effect of certain integral operator on functions of bounded turning and starlike functions. (English) Prepr., "Babes-Bolyai" Univ., Fac. Math., Res. Semin. 5, 83-90 (1986). Zbl 0619.30010.
M. Iovanov, The annulus of starlikeness for univalent functions . Anal. Numer. Theor. Approx. 13 (1984), no. 2, 111-124. MR0797974(86k:30012), Zbl 0554.30009.
M. Iovanov, On the equation f(z)=(β z+α)f(a) in the class of univalent functions. Anal. Numér. Théor. Approx. 13 (1984), no. 1, 33-43. MR0797797(87a:30019).
M. Iovanov, The annulus of convexity for univalent functions. Itinerant seminar on functional equations, approximation and convexity (Cluj-Napoca, 1984), 77-80, Preprint, 84-6, Univ. "Babes-Bolyai", Cluj-Napoca, 1984. MR0788725(86g:30031), Zbl 0548.30014.
2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1980-1999.
Universitatea Constantin Brâncuşi din Târgu Jiu, Faculatea de Inginerie |
|