![]() |
![]() |
![]() |
![]() |
![]() ![]() |
Articole-preprinturi
M. Buneci, A generalization of Zakrzewski morphisms, Advanced Studies in Contemporary Mathematics 59 (19), (2009), no. 2, 223-240. MR2566919.
M. Buneci, Borel morphisms and C*-algebras, Hot topics in operator theory, Theta Ser. Adv. Math., 9, Theta, Bucharest, 2008, 23-37. MR2436750(2009i:22003). Zbl pre05649025.
M. Buneci, Groupoid categories, Perspectives in operator algebras and mathematical physics, Theta Ser. Adv. Math., 8, Theta, Bucharest, 2008, 27-40. MR2433025(2010b:22007). Zbl pre05634995.
M. Buneci, Haar systems compatible with groupoid morphisms, An. Univ. Timisoara Ser. Mat.-Inform. 44(2006) no. 2, 19-32. MR2368682(2009a:22002). Zbl 1164.22307.
M. Buneci, Groupoid C*-algebras, Surveys in Mathematics and its Applications, 1 (2006), 71-98. MR2274294(2007h:46067). Zbl 1130.22002.
M. Buneci şi P. Stachura, Morphisms of locally compact groupoids endowed with Haar systems, arXiv : math.OA/0511613.
M. Buneci, A notion of open generalized morphism that carries amenability , Acta Univ. Apulensis Math. Inform. No. 10 (2005) - Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics (ICTAMI 2005)-Part A, 177-187. MR2240133(2007c:22001). Zbl 1113.22001.
M. Buneci, Amenable map and semi-direct products, Proceedings of the 9th National conference of the Romanian Mathematical Society, Lugoj, 6-7 mai 2005, Editura Universitatii de Vest, Seria Alef, Timisoara 2005, 69-80.
M. Buneci, C*-algebras associated to groupoids with proper orbit space, Advances in operator algebras and mathematical physics (eds. K. R. Davidson, D. Gaşpar, Ş. Strătilă, D. Timotin, F.H. Vasilescu), 45-53, Theta Ser. Adv. Math., 6, Theta, Bucharest, 2006. MR2276931(2008j:43002). Zbl pre05595463.
M. Buneci, An application of Mackey's selection lemma, Studia Universitatis Babes-Bolyai, Matematica vol. L(4) (2005), 23-32. MR2247528(2008g:22004). Zbl 1111.22005.
M. Buneci, Isomorphic groupoid C*-algebras associated with different Haar systems, New York J. Math. 11, 225-245 (2005). MR2154355(2007e:43003). Zbl 1091.43001.
M. Buneci, Morphisms that are continuous on a neighborhood of the base of a groupoid, Studia Sci. Math. Hungar. 42(3) (2005), 265-276. MR2208021(2006m:22004). Zbl 1120.22300.
M. Buneci, Amenable equivariant maps defined on a groupoid, Advances in Operator Algebras and Mathematical Physics –Conference Proceedings, Sinaia (Romania), June 26-July 4, 2003 (eds. F.P. Boca, O. Bratteli, R.Longo, H. Siedentop), 25--41, Theta Ser. Adv. Math., 5, Theta, Bucharest, 2005. MR2238280(2008g:43001). Zbl pre05595229.
M. Buneci, Necessary and sufficient conditions for the continuity of a pre-Haar system at a unit with singleton orbit, Quasigroups and Related Systems 12 (2004), 29-38. MR2130577(2005m:22002). Zbl 1061.22004.
M. Buneci, The equality of the reduced and the full C*-algebras and the amenability of a topological groupoid, Recent advances in operator theory, operator algebras, and their applications, Oper. Theory Adv. Appl, Birkhauser Verlag, Basel/Switzerland, Vol. 153 (2005), 61-78. MR2105469(2005m:46089). Zbl 1062.22004.
M. Buneci, Topologies on the graph of the equivalence relation associated to a groupoid, Acta Univ. Apulensis Math. Inform No. 6 (2003). - Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics ICTAMI 2003-Part A, 23-32. MR2060684(2005c:22008). Zbl 1100.22003.
M. Buneci, Haar systems and topologies on groupoids, Proceedings of the 28th Congress of the American Romanian Academy of Arts and Sciences (ARA), (Târgu-Jiu, June 3 -June 8, 2003) -Vol. II, Presses Internationales Polytechnique, 2003, 775-778.
M. Buneci, Isomorphism for transitive groupoid C*-algebras, Proceedings of CAIM 2003 (Conference on Applied and Industrial Mathematics), Vol. 1, Editura Universităţii din Oradea (2003), 42-46.
M. Buneci, Amenable unitary representations of measured groupoids. Rev. Roumaine Math. Pures Appl., 48 (2003), no. 2, 129-133. MR1999014(2004f:22004), Zbl 1045.22004.
M. Buneci, Invariant means on groupoids, Rev. Roumaine Math. Pures Appl., 48 (2003), no. 1, 13-29. MR1998058(2004i:43002). Zbl 1045.22003.
M. Buneci, Groupoid algebras for transitive groupoids, Math. Reports, vol. 5 (55), nr. 1(2003), 9-26. MR2067938(2005e:43001). Zbl 1054.43001.
M. Buneci, Haar systems on a groupoid whose orbit space is an analytic Borel space, Proceedings of the 3rd International Conference on Applied Mathematics (Borşa, 2002). Bul. Ştiinţ. Univ. Baia Mare Ser. B Fasc. Mat.-Inform. 18 (2002), no. 2, 159-164. MR2015938. Zbl 1031.22001.
M. Buneci, The structure of the Haar systems on locally compact groupoids, Math. Phys. Electron. J. 8 (2002) Paper 4, 11 pp. (electronic). MR1978500(2004c:46102). Zbl 1023.46057.
M. Buneci, Haar systems and homomorphism on groupoids, Operator algebras and mathematical physics (Constanţa, 2001) (eds. J-M. Combes, J. Cuntz, G. Elliott, Gh. Nenciu, H. Siedentop, Ş. Strătilă), 35-49, Theta, Bucharest, 2003. MR2018222(2004j:22006).
M. Buneci, Consequences of the Hahn structure theorem for Haar measure, Math. Reports, vol. 4 (54), nr. 4(2002), 321-334. MR2067412(2007k:28017). Zbl 1058.22004.
M. Buneci, C*-algebras associated to the transitive groupoids, An. Univ. Craiova Ser. Mat. Inform, 28 (2001), 79-92. MR1902038(2003b:46085). Zbl 1069.46510.
mergi la începutul listei de articole
Monografii
M. Buneci, Systems of measures on groupoids, Editura Universităţii din Bucureşti, 2009.
M. Buneci, Reprezentări de grupoizi, Editura Mirton Timişoara, 2003.
Manuale de specialitate pentru învăţământul superior
M. Buneci, Metode Numerice - aspecte teoretice şi practice (Numerical Methods - theoretical and practical aspect), Editura Academica Brâncuşi, 2009.
M. Buneci, Optimizări, Editura Academica Brâncuşi, 2008.
V. Ungureanu şi M. Buneci, Algebră Liniară: teorie şi aplicaţii, Editura Mirton Timişoara, 2004.
M. Buneci, Metode Numerice - Lucrări de laborator Editura Academica Brâncuşi, 2003.
M. Buneci, Dezvoltarea sistemelor expert în PROLOG, 2000.